
Consensus and Disagreement: Information
Aggregation under (Not So) Naive Learning

Abhijit Banerjee

Massachusetts Institute of Technology

Olivier Compte

Paris School of Economics and École des ponts ParisTech
Electro

Journal
© 2024
https:/

We
and
(Not

1 T
.org/
-covid
We explore a model of non-Bayesian information aggregation in net-
works. Agents noncooperatively choose among Friedkin-Johnsen-type ag-
gregation rules to maximize payoffs. The DeGroot rule is chosen in equi-
librium if and only if there is noiseless information transmission, leading
to consensus. With noisy transmission, while some disagreement is inev-
itable, the optimal choice of rule amplifies the disagreement: even with
little noise, individuals place substantial weight on their own initial opin-
ion in every period, exacerbating the disagreement. We use this frame-
work to think about equilibrium versus socially efficient choice of rules
and its connection to polarization of opinions across groups.
I. Introduction
As of May 2020, 41% of US Republicans were not planning to get vacci-
nated against COVID-19, compared with 4% of Democrats.1 We saw similar
divergences in mask wearing, social distancing, and so on, which protect
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his finding is according to a 2021 PBS NewsHour/NPR/Marist poll (https://www.pbs
newshour/health/as-more-americans-get-vaccinated-41-of-republicans-still-refuse
-19-shots).
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against the disease. Since COVID-19 is a life-threatening ailment that had
already taken more than 3.5 million lives worldwide, it is hard to think of
these as being simply empty gestures or entirely reflective of different pref-
erences, though there is surely some of that. Rather, there seems to be a dif-
ferent reading of the facts on the ground; for example, in a Pew Research
Center poll,2 Republicans were much more likely to say that COVID-19 is
not a major threat to the health of the US population (53% vs. 15% of
Democrats). This goes with a general deepening in the political divide be-
tween Democrats and Republicans in recent years.3

The source of this shift is a subject of much discussion: one potential
source of change is themassive growth in the use of the internet. However,
the evidence from the careful work by Gentzkow and Shapiro (2011) sug-
gests that online news consumption is not more segregated by political
leanings than other sources of information that already existed, contrary
to the concerns expressed by, for example, Sunstein (2001).4 Themost seg-
regated sources of information, according to Gentzkow and Shapiro
(2011), seem tobe social networks (voluntary associations, work, neighbor-
hoods, family, “people you trust,” etc.), which were of course always there.
However, there is evidence that online networks such as Facebook are sub-
stantially more segregated than other social networks and as a result, news
that comes from being shared on Facebook tends to be more segregated
than news from other media sources (Bakshy, Messing, and Adamic
2015).5 It is true that social media are still a relatively small (though grow-
ing) part of news consumption, but the volume of “information” that can
be quickly shared on Facebook may be much larger than other, more tra-
ditional sources. Moreover, while information was always shared through
social connections, the evidence of growing affective polarization along
political lines, especially in the United States (Boxell et al. 2022), raises
the concern that the actual exchange of sensitive information in the social
network is increasingly confined to those with similar views.
Given this evidence, we feel that it is worth exploring theoretically when

and why social learning on networks can lead to large and persistent dis-
agreements. As a starting point, we note that models of Bayesian social
learning, such as Acemoglu et al. (2011), propose relatively weak condi-
tions on signals andnetwork structureunder which information is perfectly
aggregated as the network grows to be very large. More recent work, in
2 See the 2020 poll at https://www.pewresearch.org/short-reads/2020/07/22/republicans
-remain-far-less-likely-than-democrats-to-view-covid-19-as-a-major-threat-to-public-health.

3 A 2014 Pew Research Center report (https://www.pewresearch.org/politics/2014/06
/12/political-polarization-in-the-american-public) documents such a shift of political values
for the period 1994–2014. See also Gentzkow (2016) and Bertrand and Kamenica (2023).

4 However, Guess (2021) suggests that the segregation in news consumption has been
increasing in recent years.

5 The Facebook news feed turns out to be even more segregated (Levy 2021).
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which agents repeatedly communicate (unlike in Acemoglu et al. [2011]
where they communicate only once), includes Mossel, Sly, and Tamuz
(2015), who derive necessary conditions on the network structure under
which Bayesian learning yields consensus and perfect information aggre-
gation.6 The general sense from this literature is that convergence to a con-
sensus is likely even when the network exhibits a substantial degree of
homophily (Republicans talk mostly to other Republicans) as long as ev-
eryone is ultimately connected. This Bayesian route, however, requires that
agents make correct inferences based on an understanding of all the pos-
sible ways information can transit through the network, which, at least for
large networks, strains credibility.7

The alternative way to model learning on networks is to take a non-
Bayesian route, which avoids these very demanding assumptions about in-
formation processing by postulating a simple rule that individuals use to
aggregate own and neighbors’ opinions. In recent years, the economics
literature has tended to favor the DeGroot (DG) rule, where agents up-
date their current opinion by linearly averaging it with their neighbors’
most recent opinions. As observed by DeMarzo, Vayanos, and Zwiebel
(2003), who brought it into the economics literature, the rule builds
in a strong tendency toward consensus in any connected network, even
when there is a high degree of homophily and people put high weight
on people like them, though convergence between those far from each
other in the network can be very slow.8 Faced with this force toward con-
sensus, Friedkin and Johnsen (1990) came up with a learning rule that is
similar to DG but allows each individual to keep putting some weight on
their own initial opinion.9 For obvious reasons, this rule does not lead to
a consensus.
The first question we set out to answer here is which type of rule (i.e.,

Friedkin-Johnsen [FJ] or DG) would be favored by individuals given a
choice. In other words, are there good reasons to prefer rules where in-
dividuals anchor themselves to their initial beliefs even while updating
their opinions based on what they are hearing from others?
6 They build on Rosenberg, Solan, and Vieille (2009) and the literature on “agreeing to
disagree” that goes back to Aumann (1976).

7 A Bayesian needs to think through all possible sequences of signals that could be re-
ceived as a function of the underlying state and all the possible pathways through which
each observed sequence of signals could have reached them. As discussed in Alatas et al.
(2016, 1681), there is obviously an extremely large number of such pathways.

8 Moreover, as shown by Golub and Jackson (2010), DG has the striking property that,
under some restrictions on network structure and weights on neighbors, learning con-
verges to perfect information aggregation in large networks.

9 Friedkin and Johnsen (1999, 3) write, referring to the work of DeGroot (1974) and
other precursors: “These initial formulations described the formation of group consensus,
but did not provide an adequate account of settled patterns of disagreement.”
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To study this question, we start from a broad class of rules in the spirit
of FJ, which includes DG and can formally be written as

yti 5 ð1 2 giÞyt21
i 1 giðmixi 1 ð1 2 miÞzt21

i Þ, (FJ)

where yti represents i’s belief in period t; xi represents the initial signal
that i received, correlated with some underlying state of the world (we
refer to xi as i’s initial opinion or seed); and

zti 5 o
j∈Ni

Aij y
t
j 1 εti (1)

represents the weighted average of reports received by i from his neigh-
bors (denotedNi),10 plus any processing or transmission error. This error
term is an important ingredient of our analysis. We assume that εti has
two components—a persistent one, drawn at the start of the process,
and an idiosyncratic one, drawn at each date—though, to simplify the
exposition, much of the paper focuses on persistent errors. When the
weight mi is zero, individual i is using a DG rule.11

Within this limited class of “natural” rules, parameterized by gi and mi,12

we allow agents full discretion in the choice of rules and assume that each
individual noncooperatively selects mi and gi to ensure that the long-run
opinion yi is on average closest to the underlying state. This is in the spirit
of the approach advocated in Compte and Postlewaite (2018) to model
mildly sophisticated agents.13

Our results highlight the major role of errors in shaping equilibrium
choices and outcomes. Result 1 says that absent errors, each individual
decision-maker will choose DG (mi 5 0) in the Nash equilibrium of the
rule-choice game, and hence there will be consensus. Moreover, we show
that each individual will choosegi in such away that information is efficiently
aggregated. This result thus complements Golub and Jackson (2010), who
show that when everyone uses DG (but do not choose their gi), informa-
tion aggregation in large networks is almost perfect under certain weak
conditions but generally imperfect in finite networks.
In contrast, result 2 shows that in the presence of any error in transmis-

sion, each decision-maker must choose mi > 0 in equilibrium, so there
will be no consensus even in the long run. The reason is that when all
themi are small (a fortiori when everyone uses DG) the errors tend to cu-
mulate, with the result that long-run opinions explode. Intuitively, a pos-
itive error by i pushes up i’s opinion, which raises the opinions of others,
10 The matrix A 5 ðAijÞij defines the weight Aij that i puts on j’s opinion, with Aij > 0 if
and only if j ∈ Ni , and ojAij 5 1.

11 Throughout our analysis, we assume that all gi are strictly positive.
12 We assume that the weights Aij are fixed, not subject to optimization.
13 The limitation to a specific class of rules is key. Otherwise, the individually optimal way

to process signals among all possible signal-processing rules would be the Bayesian rule.
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fueling a further rise in i’s opinion, and so on—we call these echo effects.
Raising mi allows individuals to limit this cumulation of errors, at the cost
of potentially putting too much weight on their own seeds. Moreover,
there is no way to use gi to mitigate this problem; in fact, as long as there
is no idiosyncratic error and mi > 0 for at least one player, gi’s play no role:
long-run opinions are fully determined by themi’s. Later in this paper, we
show that gi does play an important role in controlling the effects of idi-
osyncratic errors, but that does not change the need to set mi > 0.
It should be clear that in any Nash equilibrium of the rule-choice

game, there are two sources of divergence of opinions: the errors them-
selves but also the additional divergence that comes from always putting
nonzero weight on one’s initial signal (which is a choice, but one result-
ing from the presence of errors). The next question is which is the main
source of divergence.
Result 3 shows that at least when the variance v of persistent error is

close enough to zero, the second, nonmechanical source dominates—spe-
cifically, we show that in equilibrium, the weightsm are comparable to-1=3.
A rough intuition goes as follows: from the perspective of player i, when
other players use mj ≃ m, the cumulated error he faces has a long-run var-
iance of the order of -=m2. Player i will want to set mi to counterbal-
ance this, which means at the order of -=m2. Therefore, in equilibrium,
m ≃ Oð-=m2Þ.
We then compare the extent of disagreement in any equilibrium with

the social optimum. Result 4 shows that there is too little—equilibrium val-
ues of mi are always lower than the socially optimal values. One reason is
that in settingmi optimally, player i does not take into account the fact that
lowering mi raises the cumulated error faced by j. But this is not the only
reason. In choosingmi, i trades off the fact that a higher value ofmi reduces
the influence of the transmission error with the fact that it reduces the
weight on theopinions of others (which, especially in the long run, enables
i to aggregate signals from all over the network and therefore provides very
valuable information not contained in i’s own signals). But he does take
account of the fact that when mi goes up, yi better reflects the information
contained in i’s signal compared with what i learned from everyone else
(which in the long run is very close to what i’s neighbors also learned from
everyone else), and this is valuable for aggregate welfare. Technically, rais-
ing mi diminishes the correlation between yi and others’ signals, and this
enhances the welfare of others.
Next we turn to comparisons of the efficiency of information aggrega-

tion on specific simple and oft-studied networks—the complete network,
the directed circle, and the star network. At the heart of our analysis is
the characterization of cumulated errors that each individual faces and
how each player thenmitigates the consequence of these errors by control-
ling the weight of her own seed xi in her own long-run opinion, through



information aggregation in networks 2795
the choice of mi. We find that the star network performs worse than the
two others, essentially because the central player propagates correlated er-
rors to all peripheral players, thus raising cumulated errors.
In section V, we use our example of the star network to address the key

issue of polarization. The result that mi is too low might suggest that there
is always too little disagreement in equilibrium. This is true for two-person
networks but not in general. To see this, consider a network where there are
two dense clusters (modeled as stars) connected by, say, one link. Such a
network structure is not too dissimilar, for example, to the networks of Re-
publicans and Democrats in the United States, who communicate mostly
with each other (Cox et al. 2020). In this case, we show that lower mi is as-
sociated with a high degree of consensus within each cluster but more ex-
tremepolarization across the groups, reminiscent of the situation of theRe-
publicans andDemocrats in theUnited States. The general point, captured
by result 5, is that social efficiency requires the dispersion of opinionswithin
and between subgroups to have the same orders ofmagnitude. Our very sim-
ple model therefore tells a useful story about why disagreements are neces-
sary, but it also helps us understand why the resulting divergence of opin-
ions can be surprisingly large and when they are likely to be costly.
The rest of the paper is devoted to two extensions.14 In section VI, we al-

low for the possibility of idiosyncratic shocks in information transmission
in addition to permanent shocks. In this setting, the speed of updating,
gi, which plays no role in the previous analysis, also comes into play. Slow-
ing down updating by setting gi close to zero allows the agent to minimize
the changes in opinions that result from these shocks, which is an advan-
tage because the shocks average out over time. This is what result 6 shows.
In section VII, we turn to the possibility of coarse communication—say

each party reports only their current best guess about which of two actions
is preferable. In this setting, the class of potentially “natural” rules includes
the infectionmodels, studied in Jackson (2008) among (many) others, and
the related class of models studied by Ellison and Fudenberg (1993, 1995),
in which agents may rely on the popularity of a particular action among
neighbors.We work with a version of this class ofmodels where preferences
are heterogeneous and each player has many neighbors. We show that sys-
tematic errors in interpreting actions by neighborsmakes the long-run out-
come fromaDG-like rule entirely insensitive to the actual state of theworld,
but this is not true for FJ-type rules. We use this framework to discuss the
connectionbetween the errors we introduce andmisspecifications inBayes-
ianmodels (as in Frick, Iijima, and Ishii 2020 andBohren andHauser 2021)
and the related (non)robustness of long-run beliefs.
14 Other extensions are examined in the working paper version (Banerjee and Compte
2023).
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Related literature.—Our paper contributes to the large literature on
learning in social network (see the excellent review by Golub and Sadler
2017). We study non-Bayesian learning on general networks with continu-
ous choices and general networks. Within Bayesian social learning, Vives
(1993, 1997) studies a setting similar to ours (with agents receiving a noisy
signal) and, unlike us, obtains long-run convergence to the truth. The rea-
son is thatwith continuous choice sets, Bayesian agents are able toperfectly
extract the information content of the noisy signals. When the choice set
is coarser, aggregation can fail even with Bayesian agents, as shown by
Banerjee (1992) or Bikhchandani, Hirshleifer, and Welch (1992).15

InVives (1997), like in this paper, agents underweight their private seed;
in his setup, a stronger reliance on private signals in the initial phase would
speed up learning and benefit all.16 In our case, the weight cannot be al-
tered over time; however, a higher reliance on private seeds comparedwith
equilibrium weights improves welfare because this limits both the correla-
tion between information sources and the cumulated errors.
Ourpaper is also related to and inspired by the recent upsurge of interest

in the social learning with “almost” Bayesian agents. Sethi and Yildiz (2012,
2016, 2019) allow forheterogeneous andunobservable priors about the state,
and since players exchange beliefs (but not priors), there can be long-run
disagreement. However, the divergence cannot exceed the spread in initial
biases because agents correctly interpret the reports of others based on the
known distribution of priors. In contrast, Eyster and Rabin (2010), Frick,
Iijima, and Ishii (2020), Bohren and Hauser (2021), and Gentzkow, Wong,
and Zhang (2021), among others, introduce misspecifications that lead
agents to incorrectly interpret reports or actions of others. In Eyster and Rabin
(2010), the errors are assumed to be significant enough to generate incor-
rect long-run beliefs for many signal realizations. By contrast, Frick, Iijima,
and Ishii (2020) show that even small systematic misspecifications can lead
to interpretation errors that cumulate over time, though, as shown in
Bohren and Hauser (2021), a restriction to a small number of states and
common priors can prevent this drift (for an extended discussion of the
connection between these two papers and ours, see sec. VII.B). Finally, in
Gentzkow, Wong, and Zhang (2021), uncertain precision of signals and
misspecifications lead players to overestimate the precision of signals re-
ceived by others who are similarly biased.
Other papers directly modify the updating rule itself. Jadbabaie et al.

(2012) introduce rules that combineBayesian updatingof own signals with
15 Mossel, Sly, and Tamuz (2015) show that this result also depends on the network struc-
ture and that for a large class of large networks, consensus and almost perfect learning are
possible even with coarse communication.

16 In the context of non-Bayesian learning, Mueller-Frank and Neri (2021) argue in re-
lated terms in favor of nonstationary rules that first aggregate information in a sufficiently
dense part of the network.
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a DG-like averaging over neighbors’ beliefs, while Levy and Razin (2015)
consider a rule that involves cumulating log-likelihood ratios, which they
justify, like DG, on the grounds that it mimics what a subjective Bayesian
(with an erroneous model of the world) would do (see also Dasaratha,
Golub, and Hak 2023, 11). Finally, Molavi, Tahbaz-Salehi, and Jadbabaie
(2018) provide axiomatic justification(s) (motivated by imperfect recall)
for DG-style linear aggregation (and averaging) of log belief ratios.17

By contrast, we take an evolutionary approach to rule selection, assum-
ing selection within a restricted family of plausible stationary rules. There is
of course a vast literature on the evolutionary selection of general behav-
ioral rules, going back to Axelrod (1984). Fudenberg (1998) provides an
excellent introduction to the selection of strategies in game-theoretic set-
tings. Our focus is on selecting rules for aggregating information in poten-
tially large and complex network settings.
II. Basic Model

A. Transmission on the Network
We consider a finite network with n agents, assume noisy transmission/
reception of information, and define a simple class of rules that players
may use to update their opinions. Formally, each agent i in the network
has an initial opinion xi and, at date t, an opinion yti , where both can be rep-
resented as real numbers.18 Taking as given the matrix A characterizing
the weights Aij that i puts on j’s opinion, we consider the class of updat-
ing rules (FJ) parameterized by the weights mi and gi and specified in the
introduction. Along with expression (1) for transmission errors, the dy-
namic of opinions for player i is

yti 5 ð1 2 giÞyt21
i 1 giðmixi 1 ð1 2 miÞðo

j∈Ni

Aij y
t21
j 1 εtiÞ:

When mi 5 0, the rule corresponds to the well-studied DG rule. When
mi > 0, in each period the rulemixes the decision-maker’s own initial opin-
ion xiwithDG.This perpetual use of the initial opinion in the updating pro-
cess gives FJ a non-Bayesian flavor, since for a Bayesian, their prior (i.e., the
seed) is already integrated into yt21

i and therefore there is no reason to go
back to it.19
17 Attempts to provide axiomatic foundations of the DG rule in the statistics literature go
back to Genest and Zidek (1986).

18 This opinion can be interpreted as a point-belief about some underlying state, which
will eventually be used to undertake an action.

19 In fact, as mentioned already, the one obvious attraction of DG is its quasi-Bayesian
flavor. Note that although formally the expression (FJ) encompasses the DG rule, we refer
to FJ as a rule for which mi > 0.
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To avoid technical difficulties once we give agents discretion in choos-
ing their updating rule, we set g > 0 arbitrarily small and restrict atten-
tion to FJ rules where gi ≥ g. We also assume that the matrix A is connected
in the sense that for some positive integer k, the kth power of A has only
strictly positive elements—that is, Ak

ij > 0 for all i, j. In other words, every-
one is within a finite number of steps of the rest.
Note that all the rules consideredhereare stationary, in the sense that the

weighting parametersmi and gidonot vary over time.20We see these as plau-
sible ways in which boundedly rational agents might incorporate others’
opinions into their current opinion.We recognize that with enough knowl-
edge of the structure of the network and the process by whichnew informa-
tion gets incorporated, adjusting the weights over timemay make sense. In
Banerjee and Compte (2023), the working paper version of this paper, we
discuss this.
We also impose the assumption that everyone operates on the same

time schedule: periods are defined so that everyone changes their opin-
ion once every period and everyone else gets to observe that change of
opinion before they adjust their opinion in the following period. We re-
lax this assumption in Banerjee and Compte (2023).
B. Errors in Opinion Sharing
The term εti is an important ingredient of our model, meant to capture
some imperfection in transmission.21 It represents a distortion in what
each individual “hears” that aggregates all the different sources of errors.
Until section VI, we assume that the error term is persistent, realized at the
start of the process and applying for the durationof the updating process.22

We denote by yi this persistent error, so

εti ; yi:

In section VI, we extend the model and incorporate idiosyncratic errors:

εti 5 yi 1 nti ,

where nti is independent and identically distributed (i.i.d.) across time
and agents.
20 In this sense, even DG is only quasi-Bayesian, since for Bayesian the weight on new re-
ports goes down over time.

21 There have been several recent attempts to introduce noisy or biased transmission in
networks. In Jackson, Malladi, and McAdams (2019), information is coarse (zero or one),
and noise can either induce a mutation of the signal (from zero to one or from one to zero)
or a break in the chain of transmission (information does not get communicated to the net-
work neighbor).

22 One interpretation is that each information aggregation problem is characterized by
the realization of an initial opinion vector x and persistent bias vector y and that agents
face a distribution over problems.
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We interpret yi as a systematic bias that slants how opinions of others
are processed by i. Biases yi may be drawn independently across players,
but we also discuss cases where they are positively correlated, such as
when a group of friends share a political bias. Also note that although
errors are indexed by i, our formulation can accommodate biases that
result from both “hearing” errors and “sending” errors.23

For convenience, we assume that all error terms are unbiased (i.e.,
Eyi 5 0 and Enti 5 0) and homogeneous across players, so we let

- 5 -i 5 varðyiÞ:
C. The Objective Function
There is an underlying state v, and agents want their decision to be as
close as possible to that underlying state, where the decision is normal-
ized to be the same as the agent’s long-run opinion. In other words, we
visualize a process where agents exchange opinions a large number of
times before the decision needs to be taken.
Given this private objective, we explore each agent’s incentives to

choose his updating rule within the class of FJ rules to maximize the
above objective on average across many different realizations of the un-
derlying state of the world, the initial opinions, and the transmission er-
rors. We have in mind the idea that individuals choose a single rule to
apply to many different problems. This is why we focus on their ex ante
performance.24 The set of possible updating rules is extraordinarily vast,
so the limitation to FJ rules is of course a restriction. Our motivation is to
examine the incentives ofmildly sophisticated agents who have some lim-
ited discretion over how they update opinions.
Formally, we assume that the initial signals are given by

xi 5 v 1 di,

where the values of v are drawn from some distribution G(v) with mean
zero and finite variance; di, yi, and nit are random variables that are inde-
pendent of each other for all i and t and are also independent of v. We
assume that noise terms di are unbiased, with variance j2

i > 0. For conve-
nience, except where we need to assume otherwise to make a specific
point, we set ji 5 1 for all i, but we do not actually need this assumption.
23 For example, if there were both “hearing” errors labeled yh
i and “sending” errors la-

beled ys
i , one could define yi 5 yh

i 1 ojAijy
s
j as the resulting processing error. Sending er-

rors naturally generate correlations across the yi’s and a profile of errors that depend on
the network structure A. This is further discussed in Banerjee and Compte (2023).

24 That is, on average over states, initial opinions, and transmission errors.
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For any t, each profile of updating rules (m, g) generates at any date t a
distribution over date-t opinions. We now define the expected loss (where
the expectation is taken across realizations of v, di, and εti for all i and t):

Lt
i 5 Eðyti 2 vÞ2:

We then define the limit loss Li 5 limt ↗∞Lt
i .
25
D. Methodological Assumptions
The loss Li depends on the profile of updating rules (m, g), and our
main methodological assumptions are that (i) there is a force toward
the use of higher-performing rules (e.g., justified by evolution or rein-
forcement learning) and (ii) in this quest for higher-performing rules,
each individual considers (and gets feedback about) only a limited set
of rules (i.e., the FJ class).
Formally, our analysis boils down to examining a rule-choice game

where, given the rules adopted by others, each agent aims at minimizing
Li (using the instruments mi and gi available to her): the object of interest
is the Nash equilibriumof this rule-choice game. Since Li represents an ex-
pectation across various realizations of initial signals and noise in transmis-
sion, we think of the person choosing one rule, parameterized bymi and gi,
to apply in many different life situations. These parameters are meant to
capture some general features of opinion formation—specifically, the per-
sistence of initial opinions and speed of adjustment of the current opinion.26

It is precisely this fact that rules apply across many different problems,
and that a limited set of rules are considered, that makes our third route
cognitively less demanding than the Bayesian route. While we agree that
choosingmi and gi optimally is a difficult problem that in principle requires
knowledge of the structure of the model, there is no reason why the stan-
dard justification of the Nash equilibrium as a resting point of an (un-
modeled) learning/evolutionary process would not apply here. Moreover,
one of our most important results is that DG rules—and indeed all rules
that put too little weight (mi) on initial opinions—are dominated when
there is noise in transmission, suggesting a strong force away fromDG even
if agents find it difficult to find the exact optimal value of mi.
25 Alternatively, one could define Li 5 limh ↘ 0ð1 2 hÞoht21Lt
i , assuming that the agent

makes a decision at a random date far away in the future and that his preference over de-
cisions is uiðai , vÞ 5 2ðai 2 vÞ2. Li is well defined for any vector m, g so long as m ≠ 0. As it
will turn out, form 5 0, Li is infinite. Note that each player can secure Li ≤ varðdiÞ 5 j2

i 5 1
by ignoring everyone else’s opinions (mi 5 1).

26 Our view is that these features probably do adjust to the broad economic environment
agents face, but for each opinion-formation problem within a certain context, the actual
sequence of opinions is mechanically generated given these features.
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In the next section, we start by exploring the long-run properties of
different learning rules within the DG and FJ class, with and without er-
rors. Then we turn to the optimal choice of learning rules.
III. Some Properties of the Long-Run Opinions
In this paper, we make a distinction between results, which are meant to
be of substantive interest, and propositions, which are more technical
and meant to explain and lead up to the results. This section reports a
number of propositions that provide the bulwark for our main results
in section IV. We start by studying the properties of long-run opinions
under DG and FJ with and without errors. In particular, we show that
in the presence of errors there is convergence under FJ as long as at least
one person i0 has mi0 > 0 but not under DG. We then explore what deter-
mines the variance of the limit opinion in the case where such a limit
opinion exists. In particular, what part of it comes from the “signal”—
the original seeds—and what part comes from the noise that gets added
along the way? We also explore the degree to which a player can influ-
ence long-run opinions through the choice of mi and gi.
A. DG without Errors
It is well known that in the DG case without errors (mi 5 0 for all i),
learning converges to consensus and steady-state values of yi for all i. De-
fine Γ as the diagonal matrix such that Γii 5 gi. In matrix form, the dy-
namic of the vector of opinions yt 5 ðyti Þi under DG without noise can be
expressed as

yt 5 B0y
t21,  where B0 5 I 2 Γ 1 ΓA, (2)

implying that

yt 5 ðB0Þtx, (3)

where x is the vector of initial opinions. Let Δn be the set of vectors of
nonnegative weights p 5 fpigi, with opi 5 1. Because the network is con-
nected, A is an irreducible stochastic matrix,27 so there is a (unique)
strictly positive vector of weights r ∈ Δn such that rA 5 r. When gi > 0
for all i, B0 is also an irreducible stochastic matrix, so there is a unique
vector p ∈ Δn such that pB0 5 p, and we must have28

pi

pj

;
ri

rj

gj

gi

: (4)
27 This is because Ak has only strictly positive elements for some large k.
28 This is because p0 ; rΓ21 solves p0B0 5 p0 2 r 1 r 5 p0. Thus, since p is unique, p

must be proportional to p0.
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When t gets large, all rows of (B0)t converge to p, so all opinions yti con-
verge to the same limit opinion p.x—that is,

yi 5 p:x for all i: (5)

So although the direct contribution of i’s initial signal to i’s opinion van-
ishes, it surfaces back from the influence of neighbors’ opinions (which in-
creasingly incorporate i’s initial signal), settling at a limit weight equal topi.
Using (4), onemay rewrite (5) to highlight how the speedof adjustment gi

affects player i’s influence on long-run opinions. We have the following:
Proposition 0. When mi 5 0 for all i and in the absence of errors,

long-run opinions all converge to the same limit opinion p.x and

yi 5 pixi 1 ð1 2 piÞqi:x2i ,  where 
pi

1 2 pi

5
1

gi

ri

oj≠irj=gj

(6)

and where qi is a probability vector in Δn21 that does not depend on gi.
In other words, the network structure determines r. Given r, player i can

use gi to control her influence on the long-run opinion, pi, but she cannot
control the relative weights on the opinions of others, captured by qi.
B. DG with Errors: Exploding Dynamics
Below we show that if all agents follow a DG rule, then for almost all re-
alizations of y, the long-run opinions diverge.
Proposition 1. Assume that mi 5 0 for all i. Then for almost all re-

alizations of y, lim jyti j 5 ∞ for all i and x.
This proposition shows, for one, that an error y1 in a single agent’s per-

ception is enough to drive everyone’s opinions arbitrarily far from the
truth: if, say, y1 > 0, the error creates a discrepancy between agent 1’s opin-
ion and that of the others, but every time the others’ opinions catch up
with him, agent 1 further raises his opinion comparedwith others, prompt-
ing another round of catching up, and eventually all opinions blow up.
Proof. With errors, equations (2) and (3) become yt 5 B0yt21 1 Γy and

yt 5 ðB0Þtx 1 o
0≤k<t

ðB0ÞkΓy:

For k large enough, each row of (B0)k is close to p, so yti diverges for all i
whenever pΓy ≠ 0. QED
C. Anchored Dynamics under FJ
Again fixing x and y, we now examine long-run dynamics under FJ.
Proposition 2. Assume that at least one player—say, i0—updates ac-

cording to FJ (with mi 0 > 0). Then, for any fixed x and y, yt converges and
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the limit vector of opinions y does not depend on g or on the signal xi of
any individual with mi 5 0.
Proposition 2 shows that to prevent all the opinions from drifting

away, it is enough that there is one player who continues to put at least
a minimum amount of weight on his own initial opinion in forming his
opinion in every period. Proposition 2 also shows that when mi 5 0, the
signal initially received by i has no influence on the players’ long-run
opinions. A detailed proof is in appendix B (available online).
When mi 0 > 0 for some i0, proving convergence is standard.29 The limit

opinion y then solves

yi 5 ð1 2 giÞyi 1 giðXi 1 ð1 2 miÞAiyÞ for all i,
where Xi 5 mixi 1 ð1 2 miÞyi , which implies that, in matrix form, it is
also the solution of

y 5 X 1 ðI 2 M ÞAy, (7)

where M is the diagonal matrix with Mii 5 mi . This expression implies
that limit opinions are independent of the gi’s. It also explains why
long-run opinions involve only the seeds xi of players for whom mi > 0,
since for the others, Xi 5 yi .
D. The Dominance of Noise under Low m
Although convergence is guaranteed when at least one player does not
use DG, there is no discontinuity at the limit where all mi get small;
long-run opinions then become highly sensitive to the persistent error y.
We have the following:
Proposition 3. Let �m 5 maxmi . Then Li ≥ ð-=nÞ½ð1 2 �mÞ2=�m2�.
The detailed proof is in appendix A2. The lower bound on Li is ob-

tained by showing that for given x, y, long-run expected opinions are a
weighted average of modified initial opinions, defined, whenever mi > 0, as

~xi 5 xi 1 ð1 2 miÞyi=mi :

To fix ideas, assume that mi > 0 for all i.30 Then, using the previous no-
tation, one can write X 5 M~x and, using (7), obtain

y 5 M~x 1 ðI 2 M ÞAy ; P~x, (8)

where P is a probability matrix.31 Intuitively, xi can be thought of as the
seed that individual i plants in her belief in every period and ~xi as the
29 The argument follows Friedkin and Johnsen (1999).
30 The argument generalizes to the case where a subset N 0 ⊈N of agents follows DG

(mi 5 0). (See app. sec. A2.)
31 Thismeans that each line ofP is a probability vector. P is the limit ofP tdefined recursively

by P t11 5 M 1 ðI 2 M ÞAP t andP 1 5 I . By induction, eachP t (andP) is a probabilitymatrix.
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effective seed given processing errors. Long-run opinions are averages over
effective seeds. Since the variance of each ~xi is bounded below by
-ð1 2 �mÞ2=�m2, we obtain the desired lower bound.
Two-player case.—The two-player case provides a useful illustration.

With two players, assuming that m1 and m2 are strictly positive, long-run
opinions solve

yi 5 mi~xi 1 ð1 2 miÞyj 5 mi~xi 1 ð1 2 miÞðmj~xj 1 ð1 2 mjÞyi,

which further implies that

yi 5 pi~xi 1 ð1 2 piÞ~xj ,  where pi 5 mi

mi 1 ð1 2 miÞmj

, (9)

confirming that long-run opinions are a weighted average of modified
opinions. Furthermore,

yi 5 pixi 1 ð1 2 piÞðxj 1 ŷiÞ,  where ŷi 5
yi 1 yj

mj

2 yj : (10)

The term ŷi can be interpreted as the cumulated error that player i faces,
resulting from each player repeatedly processing the other’s opinion
with an error, while pi characterizes how player i’s own seed influences
her long-run opinion. Since pi 1 pj 5 ðm1 1 m2Þ=ðm1 1 m2 2 m1m2Þ > 1,
it must be that players differ in the weight they put in the long run on
seeds, so there is disagreement, and the magnitude of the disagreements
rises with m.
In networks, echo effects arise because players incorporate opinions that

they themselves have contributed to shape, and these echoes shape both
long-run influence and cumulated errors: when mi is small, the influence of
player imay nevertheless be large because although i puts a large weight
on yj, if mj/mi is small as well, then yj has been shaped mostly by xi; echoes
also shape cumulated errors because a single loop of communication gen-
erates a combined error of yi 1 yj , which is (partially—but almost entirely
when mj is small) added to all opinions and thus cumulates over time.
E. Influence under FJ Rules and Cumulated Errors
Under DG rules and no errors, a player can control her influence by
modifying gi. Under FJ rules, the long-run opinions do not depend on
gi; instead, as the previous two-player example illustrates, the limit opin-
ions depend on the vector of weights m. Here we characterize both influ-
ence and cumulated errors for more general networks.
When at least one player i0 sets mi0 > 0, long-run opinions converge

and we have
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yi 5 mixi 1 ð1 2 miÞyi 1 ð1 2 miÞŷi ,  with ̂yi ; o
k≠i
Aikyk: (11)

Player i’s opinion thus builds on the opinion ŷi of a (fictitious) composite
neighbor who aggregates the opinions yk, to which the error yi is added.
Letting ~Ai

kj 5 Akj=ð1 2 AkiÞ, we rewrite (11) to describe how each opin-
ion yk builds on yi:

yk 5 mkxk 1 ð1 2 mkÞyk 1 ð1 2 mkÞAkiyi 1 ð1 2 mkÞð1 2 AkiÞo
j≠k,i

~Ai
kj yj : (12)

Thus, in effect, in incorporating the composite opinion ŷi, player i is
(partially) incorporating her own opinion yi: the opinions that i gets
from others are partially echoes of her own opinion. So even if her
per-period reliance on xi is small (i.e., mi small), her seed xi may eventu-
ally have a large influence on long-run opinions. Another aspect is that
in incorporating the composite opinion ŷi, each player i is (partially)
adding other players’ error terms to her own, and any opinion that con-
tributes to ŷi is itself subject to errors. Proposition 4 below characterizes
both effects: long-run influence and cumulated errors.
LetMi (respectively, ai) be the diagonal N 2 1 matrix for whichMi

kk 5
mk for k ≠ i (respectively, ai

kk 5 Aki), and define the matrix Q i 5 ðI2
ðI 2 MiÞðI 2 aiÞ~AiÞ21 and vector Ri such that Ri

j 5 okAikQ i
kj . Also let

hi ; 1=oj≠iR i
j mj . We have the following:

Proposition 4. Assume that player i0 ≠ i hasmi0 > 0. Then hi ≥ 1 and

yi 5 pixi 1 ð1 2 piÞðx̂i 1 ŷiÞ,  where x̂i 5 qi :x2i,

pi
1 2 pi

5
mihi

ð1 2 miÞ ,  q
i
j 5

Ri
j mj

oj≠iR
i
j mj

,  and

ŷi 5 hiðyi 1o
j≠i
R i

jyjð1 2 mjÞÞ:

(13)

Proposition 4 provides an analog of proposition 0 when at least one
player uses an FJ rule. Without errors, player i’s long-run opinion is an
average between her own seed xi and a composite seed x̂i (an average over
the others’ seeds). The weight pi defines how player i’s own seed influ-
ences her long-run opinion, and through the choice of mi player i has
full control over this weight. However, player i has no control over the
composite seed x̂i , as the vector of weights qi ∈ Δn21 is fully determined
by A and m2i.
In the presence of errors, the weights pi and qi remain the same. The

difference is that when attempting to incorporate the composite seeds,
player i faces a cumulated error term ŷi . This error term can be very large
when all mj’s are small.
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Proposition 4 also confirms an insight suggested by proposition 2: the
seed xj of any individual who sets mj 5 0 has no influence on long-run
opinion (either his own or others’). Finally, to complete the set of possi-
ble cases, we have the following:
Proposition 5. If m2i 5 0 and mi > 0, then yi 5 xi 1 ½ð1 2 miÞ=

mi �ðyi 1 oj≠iR i
j yjÞ, where R is as defined in proposition 4.

Consistent with proposition 3, echo effects rise without bound when
mi gets small. Propositions 4 and 5 imply that if all players but i use
DG, all players’ opinions will build on xi only, however small mi is.
Mueller-Frank (2017) makes a similar observation in a model without er-
rors (concluding that learning outcomes are highly sensitive to small de-
partures from DG).
We now use proposition 4 to provide a characterization of the privately

optimal choice of mi and its consequence for the loss Li. Recall from
proposition 4 that yi 5 pixi 1 ð1 2 piÞðx̂i 1 ŷiÞ, where x̂i 1 ŷi is a term that
depends only on the structure of the network and m2i and that has variance

Wi ; varðx̂iÞ 1 -̂i ,  where -̂i 5 E ŷ2
i : (14)

Since player i fully controls pi by adjusting mi (since pi=ð1 2 piÞ 5 himi=
ð1 2 miÞ), individual i optimally sets pi so that pi=ð1 2 piÞ 5 Wi=j

2
i , and

we obtain the following:
Proposition 6. For a given m2i, the optimal choice of mi and result-

ing loss Li satisfy

mi

1 2 mi

5
Wi

hij
2
i

 and Li 5 j2
i pi 5

Wi

1 1 Wi=j
2
i

: (15)

Since Wi=hi depends on the network structure and m2i only, proposi-
tion 6 allows us to easily characterize equilibrium weights m*

i , as well
as the induced equilibrium losses.
This proposition also implies that the loss Li is fully determined by

Wi. It is instructive to compare Li with the minimum feasible loss v* ob-
tained under efficient aggregation of initial opinions—that is, v* 5
minq  varðp:xÞ. This minimum loss satisfies

v* 5 j2
i p

*
i 5

W *
i

1 1 W *
i =j

2
i

, (16)

whereW *
i 5 minq  varðq:x2iÞ.32 So wheneverWi rises aboveW *

i , the loss Li

rises above v*. Expression (14) thus highlights the two possible addi-
tional sources of losses that player i now faces: (i) the fact that seeds of
others may not be efficiently aggregated (i.e., varðx̂iÞ > W *

i ) and (ii) the
presence of the cumulated error term ŷi.
32 This is because v* 5 minp varðp:xÞ 5 minpi
varðpixi 1 ð1 2 piÞW *

i Þ.
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Section IV builds on propositions 4, 5, and 6 to characterize the equi-
librium of the rule-choice game. We also see that when errors are small,
the cumulated errors ŷi are the preponderant source of inefficiency. We
conclude this section with further comments on DG and FJ rules.
F. Understanding the Difference between DG and FJ
a) On anchoring, influence, and consensus.—DG and FJ generate a very dif-
ferent dynamic of opinions. Permanently putting weight on one’s initial
opinion is equivalent to putting a weight on the opinion of an individual
who never changes opinion: it anchors one’s opinion, preventing too
much drift. As a result, it also anchors the opinions of one’s neighbors
and hence the opinions of everyone in the (connected) network.
The channel through which each player influences long-run opinions

also differs substantially. In the absence of noise, and for a given network
structure, relative influence in DG depends on relative speed of adjust-
ment g, with lower speed increasing influence (see [4]).
In contrast, under FJ, the speeds of adjustment g have no effect on long-

run opinions y. Only the mi’s (and the structure of the network) matter.
Thesemi’s determine player-specific vectors of weights, but at the limit where
all mi’s are very small, these vectors converge to one another (see appen-
dix), with the weight pi on i’s seed proportional to miri—that is,

pi
pk

5
miri

mkrj

: (17)

This is an analog to (4) showing that, close to the limit, mi plays the same
role that 1=gi does in DG and consensus obtains. As the mi’s go up, how-
ever, consensus disappears: players “agree to disagree.”
b)On the fragility of DG.—There is something inherently fragile about the

long-run evolution of opinions underDG. Since individuals do not put any
weight on their own initial signal after the first period, the direct route for
that signal to stay relevant is through the weight put on their own previous
period’s opinion. This source clearly has dwindling importance over time.
This gets compensated by the growing weight on the indirect route—each
individual i adjusts his orher opinion based on the opinions of their neigh-
bors, and these are in turn influenced by i’s past opinions and, through
those, by i’s initial signal. In DG without transmission errors, the second
force at least partly offsets the first one—but this is no longer true when
there is any transmission error because of the cumulative effect of noise
that comes with the feedback from others.
c) On the source of change in opinion.—One way to assess the difference

between DG and FJ is to express them in terms of changes of opinions
and opinion spreads. Defining the change of opinion Y t

i 5 yti 2 yt21
i ,
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the neighbors’ average opinion ŷti and the spread Dt
i 5 ŷti 2 yti between

others’ and own opinions, and setting gi 5 1 for all i for the FJ process,
we have the following expressions:

Y t
i 5 giðDt21

i 1 yiÞ, (DG)

Y t
i 5 ð1 2 miÞAiY

t21: (FJ)

Under DG, one changes one’s opinion whenever there is a (perceived)
difference between that opinion and the opinions of one’s neighbors; any
difference generates an adjustment aimed at reducing it. In the absence of
errors, this creates a force toward consensus, withDt

i and Y t
i eventually con-

verging to zero. With errors, however, this adjustment aimed at reducing
the (perceived) spread actually keeps opinions moving:33 errors are even-
tually incorporated into the opinions of all the players, and repeated errors
tend to cumulate and generate a general drift in opinions. The force to-
ward consensus is in this sense too strong.
By contrast, under FJ, players incorporate only changes in the opinions of

others. Thus, in the case where the transmission error is fixed, y1 will gen-
erate a one-time change onplayer 1’s opinion, but it will not by itself generate
any further changes for player 1. Of course, this initial (unwanted) change
of opinion will trigger a sequence of further changes—it will be partially in-
corporated in player 2’s opinion and therefore comeback toplayer 1 again.
This is what we call an echo effect. But, whenmi > 0 for at least one player, the
echo effect will be smaller than the initial impact and will get even smaller
over time, and as result, opinions will not blow up: all Y t

i ’s eventually con-
verge to zero. Nevertheless, if all mi’s are small, the echo effects are not
dampened enough, and the consequence is a high sensitivity of the final
opinion to the errors.
IV. Choosing the Rule

A. When There Are No Errors
We build on propositions 4 and 5 to characterize the equilibrium of the
rule-choice game, starting with the case of no error. We show that the equi-
libriummust be DG and that in equilibrium, information aggregationmust
be perfect. Formally, define p* as the vector of weights on seeds that achieve
perfect information aggregation—that is, p* 5 arg minpvarðokpkxkÞ—and
let v* 5 varðp*:xÞ. We have the following:
33 Technically, opinions can never settle because this would require finding a vector y for
which D 1 y 5 0 and hence Ay 2 y 1 y 5 0, which is not possible unless r:y 5 0.
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Result 1. In the absence of transmission errors, the equilibrium
must be DG. In addition, in equilibrium, yi 5 p*:x and Li 5 v*.
In other words, as long as there is no noise, we get perfect agreement

in opinions in equilibrium and perfect information aggregation. As
mentioned in the introduction, the main difference with DeMarzo,
Vayanos, and Zwiebel (2003) and Golub and Jackson (2010) is that we
allow for endogenous weights gi. For any connected network, this is
enough to obtain efficiency in equilibrium.
Intuitively, both yi and the neighbor’s composite limit opinion ŷi are

weighted averages between xi and the composite seed x̂i, with different
weights when players do not use DG rules. In equilibrium, i optimally
chooses the weighting to reduce variance, so if the equilibrium is not
DG, the variance v(yi) must be strictly smaller than the variance vðŷiÞ,
which itself is no larger than the maximum variance maxkv(yk). Since this
cannot be true for all i, the equilibrium must be DG.
Regarding efficiency, in a DG equilibrium, player i chooses the relative

weight pi on her own seed by modifying gi, and any departure from per-
fect information aggregation leads i to choose a relative weight pi no
smaller than p*i . In a DG equilibrium, pi also characterizes the influence
of xi on the common long-run opinion (there is consensus), so the
weights pi must add up to one. This can happen only if they coincide with
the efficient weights p*i . Therefore, there is a unique (and efficient) equi-
librium outcome.
B. Rule Choice When There Is Noise
We already saw that as soon as there is some noise, the outcome gener-
ated by any DG rule drifts very far from minimizing Li. The loss grows
without bound. Indeed, from the point of view of the individual decision-
maker it would be better to ignore everyone else than to follow DG. In
fact, all strategies that put too little weight on their own seed (recall that
DG puts zero weight) are dominated from the point of view of the individ-
ual decision-maker, as well as being socially suboptimal.
Result 2. Let m 5 -=ð1 1 -Þ. Any (mi, gi) with mi < m is dominated

by (m, gi), from the individual and social point of view.
Regarding the choice of the individually optimal rule, result 2 builds on

two ideas. First, if all other players use DG, then for agent i, any mi > 0 is
preferable to DG because everyone’s opinion drifts off indefinitely if
mi 5 0, as we saw above. Second, if some players use FJ (withmj > 0), then
initial opinions of these players xj (plus any persistent noise in their recep-
tion of the signal) totally determine the long-run outcome and the seeds of
all the players who use DG do not get any weight—they end up as pure fol-
lowers. This is not desirable for these DG players (and for the others) for
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the same reason why, in the absence of noise, each one wishes to let their
own seed influence their long-run opinion—hence the lower boundonmi.
To see why this is also true of the socially optimal rule (i.e., the rule

that minimizes ∑iLi), we observe that when mi 5 0, the only effect of in-
formation transmission by i to his neighbors is to introduce i’s percep-
tion errors into the network. When i raises mi above zero, he raises the
quality of the information he transmits while limiting the damaging
echo effect that low mi generates.
C. How Large Is the Divergence in Opinions?
Result 2 has the obvious implication that full consensus is never going to
be an equilibrium when there are persistent errors—there are in fact two
sources of deviation: the error itself (which mechanically prevents con-
sensus) and the extra weight mi on one’s initial signal (which fuels fur-
ther divergence).
Result 3 below shows that because of cumulated errors, the optimal

weight put on one’s own seed tends to be relatively large—that is,
Oð-1=3Þ (of the order of -1=3).34 As a result, when v is small the extra
weight on one’s own seeds becomes the preponderant source of disper-
sion. These extra weights also determine the equilibrium magnitude of
-̂i and Li. We have the following:
Result 3. For any given finite network and any - > 0 small, in equi-

librium, all mi, pi 2 p*i , -̂i , and Li 2 v*i are positive and Oð-1=3Þ.
Note that in addition to cumulated errors, there is another source of

inefficiency in equilibrium: the fact that seeds are not efficiently weighted.
But that inefficiency is Oð-2=3Þ:35 a socially optimal choice of weights mi

would trade off more inefficient weighting (larger m) against decreasing
the variance of cumulated errors.
The intuition for result 3 runs as follows. The error terms -̂ areOð-=m2Þ.

These error terms degrade the quality of information that each i gets (rais-
ingWi aboveW *

i ), which in turn implies a weighting pi of i’s seed larger than
the efficient weighing p*i , with pi 2 p*i at least Oð-=m2Þ (by [15] and [16]).
When m > 0, players end up weighing seeds differently, but when all m are
small, the spread between the weights is also small and O(m). Thus, if pk rep-
resents the weight that k puts on xk, the weight that i puts on xk must be
pk 1 OðmÞ. Since the weights that i puts on all seeds must add to one, the
pk’s must add up to at most 1 1 OðmÞ, and since the sum okðpk 2 p*k Þ is
34 When we say that m 5 Oðg ð-ÞÞ, we mean that m/g(v) has a finite limit when v tends
to zero.

35 This is because for an inefficient weighting of seeds q ≠ p*, the loss is second order in
the differences qi 2 p*i : Li 2 v* 5 oðq2

i 2 p*
2

i Þj2
i 5 oðqi 2 p*i Þ2j2

i 1 2oðqi 2 p*i Þp*i j2
i , and

the last term is zero because oðqi 2 p*i Þ 5 1 and at the optimum p*i j
2
i 5 p*j :j

2
j for all i, j.
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at leastOð-=m2Þ,mmust be at leastOð-=m2Þ in equilibrium, which givesm
at least Oð-1=3Þ.36
Note that result 3 focuses on the case where variances are small. When

the mi’s rise, the relative weights on seeds eventually diverge sufficiently
from efficient weighting that this fuels a further rise inWi and hence inmi.
D. Privately versus Socially Optimal Choices
We already showed that both private and social optima must deviate
from DG when there is noise. The next result shows that there is a sense
in which, in the presence of noise, the Nash equilibrium is closer to DG
than is desirable from the point of view of social welfare maximization.37

Result 4. At any Nash equilibrium, a marginal increase of mi by any
player i would increase aggregate social welfare.
To see why this result holds, assume that mj ∈ ð0, 1Þ and observe that

player j’s opinion can be expressed as an average between the (modi-
fied) seeds ~x2i of players other than i and player i’s opinion

yj 5 ð1 2 mjiÞCji~x2i 1 mji yi, (18)

where Cji is a probability vector and mji ∈ ð0, 1Þ,38 with mji and Cji both in-
dependent of mi.
The expression above highlights that when player i choosesmi optimally

(for him) to minimize the variance of yi, there is no reason why he would
also be minimizing the variance of yj. Specifically, we use (18) to separate
the loss Lj into three terms:

Lj 5 ð1 2 mjiÞ2varðCji~x2iÞ 1 mjiLi 1 2ð1 2 mjiÞmjiCovðCji~x2i, yiÞ: (19)

Whenmi is raised above i’s private optimum, there is no effect on the first
term. There is a second-order effect on the second term (because we start
at i’s private optimum). The last term is what creates a discrepancy be-
tween private and social incentives.
This last term depends on the covariance between seeds other than

that of i (~x2i) and the opinion of i (yi). When mi increases, the influence
of each k ≠ i on i’s opinion is reduced and the correlation between yi and
xk (and even more so with ~xk) is also reduced. Therefore, starting at a
Nash equilibrium, Lj goes down when mi is raised.
36 The proof also shows that mi cannot increase beyond Oð-1=3Þ in equilibrium for the
same reason that the equilibrium without error terms must be DG: each player sets the
weighting pi of own seed xi optimally, and this creates a force toward optimal information
aggregation.

37 The result shows that a marginal increase over equilibrium weights enhances welfare,
but we do not have a full characterization of socially efficient weights.

38 This holds because mj ∈ ð0, 1Þ. Cji
j is positive because j is using her own seed.
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E. Simple Examples
To conclude this section, we directly compute the equilibrium and socially
efficient weights in simple examples to shed further light on the rule
choice and information aggregation. We assume that initial opinions are
equally informative (j2

i 5 1 for all i) and each player treats all his neigh-
bors symmetrically (Aij 5 1=jNij). We start with the two-player network
and next discuss other larger simple networks (directed circle, complete
network, and star network).
1. Two-Player Case
Social optimum.—Assuming independent errors, we obtain from (9)

L1 5 I ðp1Þ 1 ðp1Þ2Xðm1Þ 1 ð1 2 p1Þ2Xðm2Þ,

where I ðpÞ 5 p2 1 ð1 2 pÞ2 represents the variance of long-run opinion
in the absence of transmission noise and XðmÞ 5 -½ð1 2 mÞ2=m2� repre-
sents the effect of cumulated noise. The total social loss is L 5 L1 1 L2.
It is easy to check that, given the symmetry, minimizing the social loss

requires setting identical values form1 andm2. When both players use the
same rule (m 5 m1 5 m2), pi 5 1=ð2 2 mÞ and the social loss is

L 5 2I ð 1

2 2 m
Þð1 1 XðmÞÞ:

The expression highlights a trade-off between decreasing m for informa-
tion aggregation purposes (I(p) is minimized at p 5 1=2) and increasing
m to limit the effect of cumulated communication errors (when - > 0
and m is small, communication errors are hugely amplified).
Welfare is maximized for an m** that optimally trades off these two ef-

fects, and the socially efficient weight m** (which minimizes L) can be sig-
nificantly different from zero even when v is small. Specifically, for - 5
0:0001, m** 5 0:13, and for - 5 0:001, m** 5 0:21. Furthermore, for v
small, m** ≃ ð4-Þ1=4.39
Nash equilibrium.—We now assume that individuals choose their rules

noncooperatively. Applying proposition 5, we obtain pi=ð1 2 piÞ 5 1 1
-̂i , so

pi 5
1 1 -̂i

2 1 -̂i

,  where -̂i 5 E ŷ2
i ,
39 This is because for v small L ≃ 1 1 m2=4 1 -=m2.
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which gives the best response for i, as a function of mj:

mi 5
mjð1 1 -̂iÞ

1 1 mjð1 1 -̂iÞ :

Figure 1 plots the best responses for - 5 0:01.
In the absence of noise, -̂i 5 0 and player 1 should set m1 so that

p1 5 1=2 (for information aggregation purposes), which requires that
m1 < m2; this explains why there is no equilibrium with positive m (this
is the force toward DG). With noise, the variance -̂i explodes when mj

gets small, reflecting the cumulation of errors when mj is low. This pro-
vides i with incentives to raise pi (and hencemi), which in turn puts a lower
bound on equilibrium weights: in equilibrium, m*

1 5 m*
2 5 m* and m* is

a solution to

m* 5
-̂*

1 1 -̂*
,  with -̂* 5 -

1 1 ð1 2 m*Þ2
m*2

:

When v is small, we have m* ≃ ð2-Þ1=3. Since m** ≃ ð4-Þ1=4, the ratio of
m** to m* becomes arbitrarily large when v is small.
FIG. 1.—Best responses, - 5 0:001.
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2. Larger Networks
Equilibrium weights are obtained using proposition 6: player i’s incen-
tive condition yields

mi

1 2 mi

5 Wi=hi,

where Wi 5 varðx̂iÞ 1 -̂i. Both hi and Wi depend only on m2i and the
structure of the network, and the equilibrium values m*

i are obtained
by simultaneously solving these equations. For the directed circle and
complete network, all players are symmetric, so one easily finds the equi-
librium weight m*. For the star network, we have to examine the incen-
tives of the central player (labeled player 0) and peripheral players sep-
arately, and we obtain equilibrium weights m*

0 and m* for central and
peripheral players, respectively. We leave the details of the computation
to the appendixes (app. sec. A12 and app. B), focusing on the case where
the variance v is small. We report here some notable facts.
In the star network, the central player can have disproportionate influ-

ence on the opinions of others, and in equilibrium she chooses m*
0 much

belowm* to ensure that this is not the case: for fixedn,m*
0 =m* ≃ 1=ðn 2 1Þ,

and at the large-n limit, m*
0 =m* ≃ Oð-1=3Þ. Thus, in effect, at this limit the

central player essentially ignores her signal and behaves like a DG player.
It is also interesting to compare the aggregation properties of different

networks. Both hi andWi depend on the structure of the network, and this
eventually affects the performance of the network. For example, for fixed
m, the cumulated error terms -̂i are higher in the starnetwork than inboth
other networks, because the central player’s error term contaminates all
other players in a correlated way. The consequence is that the star network
performs worse than both the directed circle and the complete network.
Finally, we find that the directed circle performs better than the com-

plete network when n is not too large, because while the termsWi are sim-
ilar across these twonetworks, players have stronger incentives to raisemi in
the directed network.40 The comparison is reversed for large n—the direc-
ted circle yields poorer information aggregation (varðx̂iÞ is higher) and,
when persistent errors are independent, poorer averaging of errors.
V. Implications for the Divergence of Opinions
and Polarization
In the absence of noise, and if players use DG with appropriate weights g,
long-run opinions converge to a consensus y* 5 p*:x, which efficiently
40 Technically, this is because hi is smaller in the directed network, so a given target pi is
achieved with a higher mi.
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aggregates seeds. In a large network, this opinion y* will essentially coin-
cide with the underlying state v (y* ≃ v), which implies that if we consider
two such identical networks, there will be consensus within each network
and consensus across networks.
In the presence of noise, two things may happen: a divergence of long-

run opinions y away from y*, which means a divergence of average opinions
between the networks, as well as some dispersion of opinions within networks.
This section argues that there is a connection between consensus (low
dispersion) within subgroups and polarization (high divergence) across
subgroups.
To fix ideas, we consider the case of two large disconnected star net-

works modeled as above.41 This description generally fits the maps of so-
cial networks in the US population, with the two stars representing Dem-
ocrats and Republicans (Cox et al. 2020). We assume that in each star
network all peripheral players use the same weight m and that central
players behave as DG players, simply aggregating peripheral players’
opinions.42 We are interested in the effect of m on the distribution of
opinions within the star and across stars. In each star, if the central player
is labeled player 0, for any peripheral player i of that star we have

yi 5 mxi 1 ð1 2 mÞðy0 1 yiÞ:
The dispersion of opinions between two peripheral players within a given
star is

d ; Eðyi 2 yjÞ2 5 2ðmÞ2 1 2ð1 2 mÞ2-:
The average opinion of peripheral players is �y 5 m�x 1 ð1 2 mÞðy0 1 �yÞ,
and for a large network, with independent errors, only y0 contributes
to the variance of �y. Across the networks, average opinions are indepen-
dent (conditional on v) and the dispersion of opinion D between aver-
age opinions is thus

D 5 2vð�yÞ:
The following result establishes a relationship between d and D, wherev0

refers to the variance of y0:
Result 5. Fixv0 small, and assume independent errors. At the social

optimum m**, D ≃ d, and for any m ≤ m**, D ≃ 4-0=d.
Proof. When the central player is DG, y0 5 �y 1 y0, so for a large net-

work and independent errors this immediately gives �y 5 ðð1 2 mÞy0Þ=m
41 Result 5 below would also hold if the set of cross-star links were a vanishingly small
proportion of the total number of links.

42 In app. sec. A11, we consider the case where central players benevolently choose m0 to
minimize the losses of the peripheral players, given m.
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and hence D ≃ 2-0=m2 ≃ 4-0=d for small m. Writing yi 5 ðyi 2 �yÞ 1 �y,
we obtain vðyiÞ 5 ð1=2Þðd 1 DÞ. Since D ≃ 4-0=d, the loss v(yi) is mini-
mized for D ≃ d ≃ 2-1=2

0 (hence, m** ≃ -1=4
0 ). QED

Result 5 says that the social optimum is achieved for D ≃ d, and it es-
tablishes a relationship between consensus within each group (small d)
and polarization across groups (high D): asm decreases belowm**, within-
group consensus goes up but so does polarization across the groups.
Our equilibrium analysis provides one possible reason for m being too

low, but there may be others. For example, imagine that for some issues,
the errors yi are correlated across network members (calling for higher
m), while for other issues the errors are independent (calling for lower
m). If agents are unable to adjust m to the type of problem they face, the
weights m will be inefficiently low for the problems where there are corre-
lated errors, thus fostering too much consensus and polarization for these
problems.
VI. Idiosyncratic Errors
We now introduce idiosyncratic errors and assume that

εti 5 yi 1 nti ,

where nti are i.i.d. across individuals and time.43 We further assume that
Enti 5 0 and let -0 5 varðntiÞ. We wish to characterize the (additional)
loss generated by these idiosyncratic errors and examine the conse-
quence regarding incentives.
In the absence of idiosyncratic elements, the speeds of adjustment gi

play no role when mi 0 > 0 for i0. The main insight of this section is that
idiosyncratic errors induce temporary variations in opinions that are po-
tentially costly, and players have incentives to reduce these variations by
decreasing gi. Furthermore, when all players choose an arbitrarily small
gi, long-run opinions essentially coincide with the ones obtained in the
absence of idiosyncratic errors.
Formally, for any fixedm, x, and y, we define the expected opinion vec-

tor �yt 5 Eyt , where the expectation is taken over all nsi for s ≤ t. We also
let ht 5 yt 2 �yt and V t 5 varðhtÞ. Furthermore, we let y0 denote the long-
run opinion that would obtain in the absence of idiosyncratic errors and let
L0

i 5 varðy0Þ denote the associated loss of player i computed over realiza-
tions of x and y. The next proposition (proved in app. B) provides the
analog of propositions 1–3 for the idiosyncratic noise case:
43 Implicitly, we think of nti as an error in interpreting the opinions expressed by others.
Alternatively, one could consider errors in expressing one’s opinion.
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Proposition 7. If mi 5 0 for all i, Vt increases without bound. If
mi 0 > 0 for some i 0, �yt and Vt both have well-defined limits �y and V. Be-
sides, �y 5 y0, V is independent of x and y, and Li 5 L0

i 1 V . Further-
more, if mi ≤ �m and gi ≥ g for all i, Vi ≥ ð-0=2nÞ½g2ð1 2 �mÞ2=�m�.
For given m, g > 0, expected long-run opinions eventually coincide with

y0, but long-run opinions are subject to temporary changes resulting from
idiosyncratic communication errors. Proposition 7 shows that, for given g,
these temporary changes are significant and costly andwhen allm are small.
However, choosing a lower gi slows down the adjustment of one’s opin-

ion. Result 6 below shows that for small enough gi, long-run opinions be-
come essentially unaffected by temporary shocks in perceptions or tem-
porary variations in others’ opinions.
Result 6. Fix m. We have the following:

i) There exists c such that for any g > 0 and m ≥ m, Vi ≤ cmaxgj .
ii) For any g2i > 0, there exists c such that for all m ≥ m, Vi ≤ cgi.

The proof is in appendix B. Item i shows that when all gi are small, all

Vi are small. Item ii shows that by choosing very small gi, a player can get
rid of the additional variance induced by the idiosyncratic noise.
Note that the incentive to set gi arbitrarily small obviously depends

on the assumption that players care only about long-run opinions. If
players also cared about opinions at shorter horizons, then they would
have incentives to increase gi to more quickly absorb information from
the opinions of others: the trade-off is between increasing the rate of
convergence (which is desirable when the relevant horizon is shorter)
and increasing the variance induced by idiosyncratic noise (which is not
desirable).
VII. Discussion
In the working paper version of this paper, we discuss various extensions
of and possible variations on our base model. We examine the case of bi-
ased persistent errors, showing that this provides additional incentives to
raise mi and increases the losses Li. We show that FJ rules are robust to
variations in the communication protocol. We also discuss how nonsta-
tionary rules might create further difficulties. Here we focus on one ex-
tension, the case of coarse communication, which enables us to discuss
the relationship between our work and recent papers on information
aggregation in networks when agents’ priors are misspecified (Frick, Iijima,
and Ishii 2020; Bohren and Hauser 2021). The connection with that lit-
erature is that our persistent errors play the same role as a misspecifica-
tion. One key difference is that we allow players to correct—to some ex-
tent (i.e., through the weight mi)—for the misspecifications that players
are subject to.
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A. Coarse Communication
In the social learning literature, it is common to focus on choice problems
where there are twopossible actions and the informationbeing aggregated
is which of the two is being recommended by others. Coarse communica-
tion is potentially a source of herding, but when agents have many neigh-
bors, the fraction of players choosing a given action may become an accu-
rate signal of the underlying state. Below we explain how our model can
accommodate an economic environment of this kind, and we use this to
relate our findings to Ellison and Fudenberg (1993, 1995) and Frick,
Iijima, and Ishii (2020), as well as Bohren and Hauser (2021).
Assume heterogeneous preferences with vi 5 v 1 bi characterizing i’s

value from choosing one over zero, so the optimal action a*i is one when
vi > 0 and zero otherwise.44 Agent i knows bi but does not know v perfectly.
He has an initial opinion xi 5 v 1 di and aggregates opinions of others to
sharpen his assessment of v. Assume that the bi’s are drawn from identical
distribution g (and cumulative denoted G) with full support on R.
As before, we define yti as agent i’s opinion (about v) at date t, and we

assume that an agent with current opinion yti reports that at
i 5 1 if

yti 1 bi > 0 and at
i 5 0 otherwise. Each agent i observes the fraction f t

i

of neighbors who choose action zero, which she can use to make an in-
ference wið f t

i Þ about v and update her opinion using an FJ-like rule:

yt11
i 5 ð1 2 giÞyti 1 giðmix

t
i 1 ð1 2 miÞwið f t

i ÞÞ:

Long-run opinions clearly depend on the inference rule assumed, but
there is a natural candidate for wi, the function f ; h21, where
hðyÞ ; Gð2yÞ 5 Prðy 1 bi < 0Þ is the fraction of agents who choose
a 5 0 when their opinions are all equal to y. If others have opinions that
are correct and equal to v, a fraction f ≃ hðvÞ chooses a 5 0 and h21ð f Þ is
a good proxy for v. Of course, this assumes that agents know the distri-
bution over preferences. In the spirit of our previous analysis, let us as-
sume that

wið f Þ 5 fð f Þ 1 yi ,

where yi represents a persistent error in interpreting f.45 To fix ideas, we
assume correlated errors (yi 5 y for all i) with variance v.
44 Thus, for i with preference parameter bi, choosing zero when v 1 bi > 0 costs v 1 bi .
When agents choose between products one or zero, v represents a relative quality dimen-
sion affecting all preferences, as in Ellison and Fudenberg (1993).

45 As in Frick, Iijima, and Ishii (2020), yi could arise from an erroneous prior gi ≠ g , with
agents using the inference function wi 5 h21

i where hiðvÞ 5 Gið2vÞ. The difference
yið f Þ ; wð f Þ 2 fð f Þ is an error in making inferences. With preferences centered on �b
and agents having an erroneously translated prior centered on �bi , the error is independent
of f and equal to yi ; �bi 2 �b. In comparison, Ellison and Fudenberg (1993, sec. 1) examine
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Within this extension, we may ask about the fragility of long-run opin-
ions when m is small, as well as equilibrium and socially efficient weights
(details are provided in app. B). DG-like rules (m 5 0) generate long-run
opinions unanimously in favor of a 5 1 if y > 0, a 5 0 if y < 0, indepen-
dently of the underlying state and the initial signals received.
Under FJ with small m, long-run opinions remain anchored on initial

opinions but drift away from v and converge to v 1 ½ð1 2 mÞy=m�. The
trade-off is thus similar to the one in our basic model. Raising m reduces
fragility with respect to transmission noise, dampening the echo term
ð1 2 mÞy=m. And agents continue to disagree even in the long run.
The consequence regarding social incentives and private incentives is
as before, with m* and m** respectively comparable to -1=3 and -1=4:
agents do not incorporate the damaging echo effect that an mi set too
low produces in their choice of mi.
B. A Connection to Misspecified Bayesian Models
How do the results in the previous subsection relate to the results from
Bayesianmodels where agents havemisspecified priors (and in particular
Frick, Iijima, and Ishii [2020] and Bohren andHauser [2021])? Consider
a social learning environment related to these Bayesian models where
players move in sequence and observe all previous choices. Preferences
and signals are as defined above. Assume that the true state is v0. Under
Bayesian learning, if beliefs get highly concentrated on some v, then pri-
vate signals do not affect decisions much and the fraction f of people who
choose a 5 0 are approximately those for which v 1 b < 0, so f ≃ Gð2vÞ.
If agents have an erroneous prior about the distribution of b’s and believe
its cumulative is shifted by y (say, ĜðbÞ ; Gðb 2 yÞ), then agents are ex-
pecting a fraction close to f̂ 5 Ĝð2vÞ 5 Gð2v 2 yÞ, so if y > 0, f̂ < f .
When the subjective prior over states has full support, this should inevi-
tably lead agents to believe that the state is lower than v (to justify the
higher-than-expected f observed), and so on, which explains the fragility
result obtained in Frick, Iijima, and Ishii (2020).
We now introduce, as in Bohren and Hauser (2021), a fraction q of au-

tarkic players who base their choice only on their private signal xi (thus
ignoring the social information). Define G 0(v) as the fraction of autarkic
social learning assuming that bi 5 0 for all and wið f Þ 5 f 2 1=2; choices are tilted in favor
of the more popular one. Ellison and Fudenberg (1993) find that small enough m’s gen-
erate perfect learning in the long run. A key aspect of the inference rule wi( f ) is that it
correctly maps the sign of f 2 1=2 to the sign of v, which, given homogeneity, is the only
thing that agents care about. (Note that in Ellison and Fudenberg [1993], agents receive
many signals xi about the state, but given their assumptions, their model is equivalent to the
one proposed here where agents simply receive one signal at the start.)
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types who choose a 5 0 when the state is v, and to fix ideas, further as-
sume that nonautarkic types have correct priors about G 0. When beliefs
of nonautarkic types are concentrated on v and the true state is v0, the
fraction f becomes

f 5 qG 0ð2v0Þ 1 ð1 2 qÞGð2vÞ,
while a fraction

f̂ 5 qG 0ð2vÞ 1 ð1 2 qÞGð2v 2 yÞ
would be expected. The observed f will meet expectations when

G 0ð2vÞ 2 G 0ð2v0Þ 5 1 2 q

q
ðGð2vÞ 2 Gð2v 2 yÞÞ,

which implies a discrepancy Δ 5 v0 2 v comparable to y=q, which thus
blows up when q is small.
To relate this to our paper, observe that a measure q of autarkic types

generates an overall inefficiency comparable to q (because they are not
using information so each experiences a loss comparable to one), while
when y is a random variable with variance v, the loss induced by the dis-
crepancy Δ is quadratic in Δ, so comparable to -=q2, which in turn im-
plies that to implement the social optimum (to minimize the overall
loss), q should be comparable to -1=3.
Autarkic types thus play a role similar to our weights mi, helping to an-

chor the beliefs of social types.46 In our setup, the analog of social and
autarkic types would be to assume that agents either are DG (mi 5 0)
or use mi 5 1. In contrast, we have assumed that some intermediate mi

is feasible for each agent.
Another difference is that we focus on the optimal choices of mi from

the social or private points of view. In looking for a Nash equilibrium, we
decentralize the choice of mi and endogenize the weight each puts on
social versus private information.47

The lesson we draw from this discussion is that both DG and Bayesian
updating are sensitive to transmission or specification errors for a similar
reason: they both incorporate a force toward consensus, but since con-
sensus is not feasible (because of the errors), beliefs end up being pushed
to the boundaries of the feasible set of states. FJ-like rules, to the extent
46 Note that, unlike Bohren and Hauser (2021), here we find that the fraction q needs to
be large enough. This is because, unlike Bohren and Hauser (2021), who assume few states
and correct priors over states, here we assumed that subjective priors on v have full support.

47 A similar decentralization exercise (endogenizing q) could be done in the Bohren
and Hauser (2021) environment with agents choosing ex ante whether to be autarkic or
social, with the consequence that in equilibrium, they would have to be indifferent be-
tween the two roles and hence incur a significant loss (equal to that of the autarkic type).
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that they allow for sufficiently diverse opinions or beliefs, end up being
more robust.
VIII. Concluding Remarks
We end the paper with a discussion of issues that we have not dealt with
and that may provide fruitful directions for future research. One prem-
ise of our model is that everyone has a well-defined initial signal. How-
ever, the analysis here would be essentially unchanged if some players
did not have an initial opinion to feed the network and were thus setting
mi 5 0 for the entire process. FJ would aggregate the initial opinions of
those who have one.
In real life, many of our opinions come from others and in ways that

we are not necessarily aware of, and the existence of a well-defined “ini-
tial opinion” could be legitimately challenged. In other words, people
may have a choice over the particular opinion they want to hold on to
and refer back to (i.e., the one that gets the weight mi).
To see why this might matter, consider a variation of our model where

some players (Ndg) have initial opinions but use DG rule (or set mi very
low), while other agents (N f j) have no initial opinions (or very unreliable
ones). In this environment, there is a risk that the initial opinions of the
DG players eventually disappear from the system and are soon over-
whelmed by noise in transmission. The other (non-DG) players could pro-
vide the systemwith thenecessarymemory, using the initial communication
phase to gradually build up an “initial opinion” based on the reports of
theirmore knowledgeableDGneighbors, and thenperpetually seed in that
initial opinion into the network. In other words, in an environment where
information is heterogeneous and weightsmi are set suboptimally by some,
there could be a value for some agent in adopting a more sophisticated
strategy in which the initial opinion is updated for some period of time be-
fore it becomes anchored. In other words, itmay be optimal for someof the
less informed to listen and not speak for a while as they build up their own
initial opinions before joining the public conversation.
Another important assumption of ourmodel is that the underlying state

v is fixed. In particular, there would be no reason to keep on seeding in the
initial opinions if the underlying state drifts. However, it may still be useful
to use anFJ-type rulewhere the private seed is periodically updated by each
player to reflect the private signals about v that each one accumulates.
Finally, our approach evaluates rules based on their fitness value. With a

continuumof states and opinionsmodeled as point-beliefs, averaging opin-
ions naturally has some fitness value. When there are few states and opin-
ions take the form of probabilistic beliefs, averaging beliefs or log beliefs
will generally have poor (if not negative) fitness value (see, e.g., Sobel
2014). In this context, a promising FJ-like rule would consist in linearly
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aggregating the initial change in one’s own log belief (induced by one’s ini-
tial signal) with the perceived change in a composite neighbor’s log beliefs;
such a rule accommodates the intuition that belief changes potentially re-
veal information, and through appropriate weighting of one’s own versus
other’s changes, it enables each player to deal with situations where initial
belief updates are driven by interpretation errors (one then needs to filter
out interpretation errors, and averaging is good in these cases) and situa-
tions where independent information needs to be aggregated (adding
changes in log beliefs across all players would be called for). Furthermore,
as in this paper, it allows beliefs to differ, and the anchoring on one’s own
initial information (i.e., the initial change in one’s own log belief) can limit
the damaging effects of cumulated processing errors.
Appendix A

A1. Notations

DefineM and Γ as the N � N diagonal matrices whereMii 5 mi and Γii 5 gi . For
any fixed vectors of signals x and systematic bias y, we let

X 5 Mx 1 ðI 2 M Þy,
and whenever mi > 0, we let ~xi 5 xi 1 yið1 2 miÞ=mi denote the modified initial
opinion and let ~x 5 ð~xiÞi denote the vector. Next, define thematrix B 5 I 2 Γ 1
ΓðI 2 M ÞA.

We say that P is a probability matrix if and only ifojPij 5 1 for all i. Note that A is a
probability matrix, and throughout we assume that the power matrix Ak has only
strictly positive elements for some k. Finally, we refer to v(y) as the variance of y.

A2. Proof of Proposition 3

In the main text, we show that when mi > 0 for all i, long-run opinions are weighted
averages of modified opinions ~xi . Lemma A1 below (proved in app. B) gener-
alizes this observation. Define N 0 ⊈N as the set of n0 agents following DG (mi 5 0).
Denote by y0 the vector of errors of these players. We have the following:

Lemma A1. Assume thatn0 < n. Then y 5 P~x 1 Qy0, whereP is an (n,n 2 n0)-
probabilitymatrix.

From lemma A1, Li 5 vðyÞ ≥ ð1=nÞmin vð~xiÞ, which proves proposition 3.
QED

A3. Proof of Proposition 4

Assume that m ≫ 0 so ~xj is well defined for all j.48 For j ≠ i, let Xj 5
mj~xj 1 ð1 2 mjÞAjiyi and let cij 5 mj 1 ð1 2 mjÞAji . Equation (12) can be written
48 Cases where some or all mj are zero can be derived by taking limits as Qi remains well
defined.
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in matrix form to obtain, by definition of Qi, y2i 5 Q iX . Note that if ~xj 5 1 for all
j and yi 5 1, then yk 5 1 for all k, so oj≠iQ i

kj c
i
j 5 1 for all k, which implies that

o
j≠i

Q i
kjð1 2 mjÞAji 5 1 2o

j≠i

Q i
kjmj , (20)

and, since Qi is a positive matrix,49 oj≠iQ i
kjmj ≤ 1, so oj≠iR j

imj ≤ 1. Equation (20)
further implies that

yk 5 o
j≠i

Q i
kjmj~xj 1 ð1 2o

j≠i

Q i
kjmjÞyi , (21)

thus characterizing the influence of yi on k’s opinion. In particular, the smaller
oj≠iQ i

kjmj , the larger the influence of i on k. Averaging over all neighbors of i and
taking into account the weight Aik that i puts on k, we obtain

yi 5 mi~xi 1 ð1 2 miÞðo
j≠i

R i
j mj~xj 1 yið1 2o

j≠i

R i
jmjÞ, (22)

which, since mj~xj 5 mjxj 1 ð1 2 mjÞyj and hi 5 1=oj≠iR i
j mj , gives the desired ex-

pressions (13) for yi, x̂i , pi, and ŷi . QED

A4. Proof of Proposition 5

Assume that mi > 0 and apply proposition 4, taking the limit where all mj tend to
zero. For A given, Qi and Ri are uniformly bounded (with a well-defined limit
when allmj tend to zero) and ð1 2 piÞx̂i tends to zero, which concludes the proof.
QED
A5. Proof of Proposition 6

Player i optimally sets pi such that pi=ð1 2 piÞ 5 vðx̂i 1 ŷiÞ=vðxiÞ 5 Wi=j
2
i . Substi-

tuting pi, we get the desired expression for Li. QED
A6. Proof of Result 1

There are two parts in this proof. We first prove that the mi’s cannot be positive.
Next we show that the equilibrium outcome must be efficient. Recall that p* 5
arg  minpvðokpkxkÞ represents the efficient weighting of seeds and v* ; vðp*:xÞ.
Also let ri 5 1=hi .

Assume by contradiction that mj > 0. Then (13) implies that mi > 0 for all i, so
m ≫ 0. Next, from (22), and letting ri 5 1=hi , we obtain ŷi 5 ri x̂i 1 ð1 2 riÞyi ,
hence substituting yi,

ŷi 5 ð1 2 riÞpixi 1 ð1 2 ð1 2 riÞpiÞx̂i : (23)
49 Q i 5 on≥0ððI 2 MiÞðI 2 aiÞ~AiÞn , so Qi is nonnegative. If in addition m2i ≪ 1, and
since A is connected, then Q i ≫ 0.
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Thus, both ŷi and yi are the weighted average between xi and x̂i , and since m ≫ 0,
ri ∈ ð0, 1Þ, so the weights are different. Since i optimally weighs xi and x̂i (using pi on
xi), the weight ð1 2 riÞpi is suboptimal, so

vðyiÞ < vðŷiÞ ≤ max
j≠i

 vðyjÞ, (24)

where the second inequality follows from ŷi being an average of the yj’s. Since (24)
cannot be true for all i, we get a contradiction. The equilibriummust thus be DG.

Consider now a DG equilibrium. Call p 5 ðpiÞi the weights on seeds induced by g
and A, p̂i the relative weights on k ≠ i, and p̂i 5 p̂i :x2i . We have yi 5 pi

xi 1 ð1 2 piÞx̂i , and modifying gi allows the agent to modify pi without affecting x̂i
(player i increases pi by decreasing gi). Therefore, the optimal choice pi satisfies

pi

1 2 pi

5
vðx̂iÞ
j2
i

:

Let W *
i 5 minqvðq:x2iÞ. Since optimal weighting of all seeds requires optimal

weighting on seeds other than i, we have

p*i

1 2 p*i
5

W *
i

j2
i

,

which implies that

pi 5 p*i 1
ð1 2 piÞð1 2 p*i Þ

j2
i

ðvðx̂iÞ 2 W *
i Þ: (25)

The weights pi must thus be above the efficient weights p*i . Since all pi (and p*i )
add up to one, one must have vðx̂iÞ 5 W *

i ; hence, information aggregation is per-
fect. QED

Before showing result 2, we start with two lemmas that we also use to prove
result 3:

Lemma A2. For each j ≠ i, there exists mji and a probability vector C ji ∈ Δn21,
each independent of mi, such that

yj 5 ð1 2 mjiÞCji~x2i 1 mji yi : (26)

Proof. This immediately follows from expression (20) in the proof of propo-
sition 4. QED

Lemma A3. If ∂Li=∂mi ≤ 0, then ∂Lj=∂mi < 0 for all j.
Proof. Since mji and Cji are independent of mi, we obtain

∂Lj

∂mi

5 ðmjiÞ2 ∂Li

∂mi

1 mjið1 2 mjiÞo
k≠i

C
ji
k

∂Covð~xkyiÞ
∂mi

:

We substitute yi 5 pixi 1 ð1 2 piÞðx̂i 1 ŷiÞ (see [13]). Since ~xk and xi are indepen-
dent, and since x̂i , ~xk , and ŷi do not depend on mi, we get

∂Lj

∂mi

5 ðmjiÞ2 ∂Li

∂mi

2 mjið1 2 mjiÞ ∂pi∂mi
o
k≠i

C ji
k Covðxkx̂i 1 ~xk ŷiÞ:
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The terms ∂pi=∂mi and Covðxkx̂iÞ are positive, and so are the terms Covð~xk ŷiÞ
when persistent errors are independent or positively correlated. The sum on
the right side is thus positive (and the effect is amplified with errors), which
proves lemma A3. QED

A7. Proof of Result 2

Let m 5 -=ð1 1 -Þ. We show that DG and all strategiesmi < m are dominated bym.
Assume first that all other players use DG. Then by proposition 5, Li decreases

strictly with mi. Now assume that at least one player j chooses mj > 0. Then
Li 5 p2

i 1 ð1 2 piÞ2vðx̂i 1 ŷiÞ. Whether persistent errors are independent or fully
correlated, the variance of ŷi is at least equal to h2

i -, which implies that Li strictly
decreases with pi when pi=ð1 2 piÞ < h2

i - and hence also with mi when
mi=ð1 2 miÞ < hi-, and from lemma A2 we conclude that Lj decreases as well
(on this range of mi). QED

A8. Proof of Result 3

1. Step 1: Lower Bounds on �mi ; maxj≠imj

With transmission errors, optimal weighting of xi and x̂i implies that

pi
1 2 pi

5
vðx̂iÞ 1 vðŷiÞ

j2
i

, (27)

and (25) becomes

pi 5 p*i 1
ð1 2 piÞð1 2 p*i Þ

j2
i

ðvðx̂iÞ 2 v*i 1 vðŷiÞÞ: (28)

The weight pi is thus necessarily above the efficient level p*i , and there are now
two motives for doing this: inefficient aggregation by others and the cumulated
error term ŷi .

While (28) implies a lower bound on pi, as (25) did, there is a major difference
here with the no-noise case where DG is used by all: pi is the weight that i puts on
own seed, but since there is no consensus, the sum ∑ipi is not constrained to be be-
low one. Nevertheless, when allm’s are small, oipi 5 1 1 OðmÞ is close to one, and
this allows us to bound vðŷiÞ (and the difference vðx̂iÞ 2 v*i ), as we now explain.

From proposition 4, each opinion yi may be written as yi 5 P ix 1 ð1 2 P i
i Þŷi ,

where Pi is a weighting vector (such that P i
i 5 pi). Equation (21) implies that when

allm are small, the vectors Pi must be close to one another: seeds must be weighted
in almost the same way, and differences in opinions are driven mostly by the terms
ŷi . Specifically, let �mi 5 maxj≠imj . Equation (21) implies that for all k ≠ i,

pk 5 Pk
k ≤ P i

k 1 c �mi

for some constant c independent of m and k. Since Pkk 5 pk ≥ p*k , adding these
inequalities yields
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1 2 pi 5 o
k≠i

P i
k ≥ o

k≠i

pk 2 Kc �mi ≥ 1 2 p*i 2 Kc �mi , (29)

which, combined with (28), yields for some constant d,

�mi ≥ dðvðx̂iÞ 2 v*i 1
-

ð�miÞ2Þ : (30)

Since vðx̂iÞ 2 v*i ≥ 0, this implies that �mi ≥ ðd-Þ1=3, which further implies that the
variance vðŷiÞ is at most comparable to -1=3.

2. Step 2: Upper Bounds on �mi

Let ri 5 oj≠iRjmj and ŷi 5 ok≠iAikyk . With transmission errors, we obtain

ŷi 5 ð1 2 riÞpixi 1 ð1 2 ð1 2 riÞpiÞðx̂i 1 ŷiÞ 1 �yi ,

where �yi 5 2pyi 1 ð1 2 piÞoj≠iRjð1 2 mjÞyj . Since pi is set optimally by i, we have

vðŷiÞ 2 vðyiÞ ≥ ðripiÞ2ðj2
i 1 vðx̂iÞ 1 vðŷiÞÞ 2 E�yi 2 ð1 2 piÞE�yi ŷi ≥ cr 2i 2

d-
ri

for some constant c and d (independent of v and m). Since vðŷiÞ ≤ max vðykÞ, the
right-hand side cannot bepositive for all i, so ri0 ≤ ðd-=cÞ1=3 for some i0. From step 1,
we conclude that �mi0 and all mj with j ≠ i0 are Oð-1=3Þ and that mi0 is thus at least
Oð-1=3Þ.

It only remains to check that mi0 cannot be large. From (29), pi0 ≤ p*i0 1 Oð-1=3Þ,
and since pi0 ≥ 1=ð1 1 ri0=mi0Þ, we conclude that all mi (and thus �mi) are Oð-1=3Þ,
which further implies that all variances vðŷiÞ are Oð-1=3Þ.

These variances imply that Ey2i 2 v* is at least Oð-1=3Þ; Ey2i also rises because of
inefficient weighting of seeds, but the loss is of the order of ðpi 2 p*i Þ2—that is,
Oð-2=3Þ, a significantly lower loss. QED

A9. Proof of Result 4

This follows from lemma A3 since at equilibrium ∂Li=∂mi 5 0. QED

A10. Proof of Expression (17)

Call pi
j the weight that i puts on j and �Ri the limit of Ri when m2i tends to zero. It

follows from proposition 4 when allm are small that ðpi
j=mjÞ=ðpi=miÞ ≃ �Rij . To com-

pute �Rij , consider the case where mi 5 m for all i. Then y 5 m~x 1 ð1 2 mÞA~x 5
omð1 2 mÞkAk~x. Since all lines of Ak are close to r when k is large enough,
yi ≃ r~x for all i, so �Rij 5 rj=ri . QED
A11. Proof of (Generalized) Result 5

Rather than assuming that the central player is DG, here we consider a central
player who uses her seed x0 optimally to minimize the loss vð�yÞ, given m. We have
�y 5 ð1 2 mÞy0 and y0 5 m0x0 1 ð1 2 m0Þð�y 1 y0Þ. This gives �y 5 ð1 2 mÞ
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ðp0x0 1 ð1 2 p0Þðy0=mÞÞ, where the central player controls p0. The variance vð�yÞ
is minimized for p0=ð1 2 p0Þ 5 -0=m2, and we get vð�yÞ 5 ð1 2 mÞ2½ð-0=
m2Þ=ð1 1 -0=m2Þ�. So long as m ≫ ð-0Þ1=2, we obtain D ≃ 4-0=d as for the DG
case. Note that when m ≤ Oð-0Þ1=2, cumulated errors are potentially huge and
the (benevolent) central player mitigates them by choosing a large m0; since she
is benevolent, the loss cannot exceed one (the variance of her own seed). QED
A12. Network Comparisons

We conclude this appendix with network comparisons. We derive proposition A0
(see below), on which the discussion in the main text is based and that we prove
in appendix B.

To facilitate network comparisons, we assume initial signals of identical preci-
sion (j2

i 5 1), so that the efficient weighting of signals is p*i 5 1=n and
W *

i ; varðp*2i :x2iÞ 5 1=ðn 2 1Þ. All players are subject to a processing error yi,
with same variance v. From proposition 6, player i’s incentives yield

mi

1 2 mi

5 Wi=hi , (31)

where Wi 5 varðx̂iÞ 1 varðŷiÞ. Both hi and Wi depend only on m2i and the struc-
ture of the network, and the equilibrium values m*

i are obtained by simulta-
neously solving these equations. Given these equilibrium values, we can then
compute W *

i and hence (by proposition 6) the equilibrium loss L*
i . To measure

how losses Li depart from the minimum loss L*
i , we define

Δ̂i ; Wi 2 W *
i ,

which characterizes the size of the inefficiency resulting from the inefficient ag-
gregation of others’ signals and cumulated errors. Defining

ri ;
pi

1 2 pi
2

1

n 2 1
5

mihi

1 2 mi

2
1

n 2 1
,

the equilibrium condition can thus be written

ri 5 Δ̂i ,

which has the following economic interpretation: the relative weight on xi (rel-
ative to other signals) should exceed the efficient weighting by Δ̂i .

We compare three n-player networks: the complete network, where each player is
connected to all others; the directed circle, where information transmission is di-
rected and one-sided (player i communicates to player i 2 1, who communicates
to i 2 2, etc.—player 0 is player n); and the star network, which consists of n 2 1
peripheral players labeled k 5 1, ... , n 2 1 and a central player, labeled 0, who
aggregates the opinions of the peripheral players.

For eachnetwork, we characterize hi, x̂i , and ŷi (andhence ri and Δ̂i), indicating a
superscript c for the complete network, d for the directed circle, and s for the star
network.We next solve for equilibrium, focusing on the limit cases wherev is small
(for a fixed n) andwhere for a fixed smallv, n gets large. For the complete network
and the directed circle, we solve for a symmetric equilibrium. For the star network,
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we solve for an equilibriumwhere all peripheral players use the same weightm and
the central player, labeled player 0, uses m0. We obtain the following:

Proposition A0. For fixed n ≥ 3 and small v, Δ̂d
* < Δ̂*c < Δ̂*s . For fixed small

v, at the large-n limit, Δ̂*c < Δ̂d
* < Δ̂*s . These comparisons hold whether errors are

independent or correlated. Furthermore, for the star network, m*
0 =m* ≃ 1=

ðn 2 1Þ for fixed n and small v, and m*
0 =m* ≤ ð2-Þ1=3 at the large-n limit.
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